May 9, 2013 — McGill University
researchers have unlocked a new door to developing drugs to slow the
progression of Parkinson's disease. Collaborating teams led by Dr.
Edward A. Fon at the Montreal Neurological Institute and Hospital -The
Neuro, and Dr. Kalle Gehring in the Department of Biochemistry at the
Faculty of Medicine, have discovered the three-dimensional structure of
the protein Parkin. Mutations in Parkin cause a rare hereditary form of
Parkinson's disease and are likely to also be involved in more commonly
occurring forms of Parkinson's disease.
 |
The Parkin protein protects neurons from cell death due to an
accumulation of defective mitochondria. Mitochondria are the batteries
in cells, providing the power for cell functions. This new knowledge of
Parkin's structure has allowed the scientists to design mutations in
Parkin that make it better at recognizing damaged mitochondria and
therefore possibly provide better protection for nerve cells.
The research has been published online May 9 in the journal Science.
"The majority of Parkinson's patients suffer from a sporadic form of
the disease that occurs from a complex interplay of genetic and
environmental factors which are still not fully understood, explains Dr.
Fon, neurologist at The Neuro and head of the McGill Parkinson Program,
a National Parkinson Foundation Centre of Excellence. "A minority of
patients have genetic mutations in genes such as Parkin that cause the
disease. Although there are differences between the genetic and sporadic
forms, there is good reason to believe that understanding one will
inform us about the other. It's known that toxins that poison
mitochondria can lead to Parkinson's-like symptoms in humans and
animals. Recently, Parkin was shown to be a key player in the cell's
system for identifying and removing damaged mitochondria."
Dr. Gehring, head of McGill's structural biology centre, GRASP,
likens Parkin to a watchdog for damaged mitochondria. "Our structural
studies show that Parkin is normally kept in check by a part of the
protein that acts as a leash to restrict Parkin activity. When we made
mutations in this specific 'leash' region in the protein, we found that
Parkin recognized damaged mitochondria more quickly. If we can reproduce
this response with a drug rather than mutations, we might be able to
slow the progression of disease in Parkinson's patients."
Parkin is an enzyme in cells that attaches a small protein,
ubiquitin, to other proteins to mark them for degradation. For example,
when mitochondria are damaged, Parkin is switched on which leads to the
clearing of the dysfunctional mitochondria. This is an important process
because damaged mitochondria are a major source of cellular stress and
thought to play a central role in the death of neurons in
neurodegenerative diseases.
Husband and wife team, Drs. Jean-François Trempe and Véronique Sauvé,
are lead authors on the paper. Dr. Sauvé led the Gehring team that used
X-ray crystallography to determine the structure of Parkin. Dr. Trempe
in the Fon laboratory directed the functional studies of Parkin.
"We are proud to invest in scientific excellence and to fund
discovery stage research so that investigators like Dr. Gehring and Fon
in Canada can test new theories and pursue promising new leads. We
believe that our National Research Program plays an important role in
the global search for better treatments and a cure for Parkinson's
disease," says Joyce Gordon, President and CEO, Parkinson Society
Canada.
Funding was provided by grants from the Parkinson Society Canada, the
Canadian Institutes for Health Research, and infrastructure support
from the Fonds de recherche Québec and the Canada Foundation for
Innovation.
Share this story on Facebook, Twitter, and Google:
|
No comments:
Post a Comment